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Partitioned density functional approach for a Lennard-Jones fluid
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The existing classical density functional approach for nonuniform Lennard-Jones fluid, which is based on
dividing the Lennard-Jones interaction potential into a short-range, repulsive part, and a smoothly varying,
long-range, attractive tail, was improved by dividing the bulk second-order direct correlation function into
strongly density-depending short-range part and weakly density-depending long-range part. The latter is treated
by functional perturbation expansion truncated at the lowest order whose accuracy depends on how weakly the
long-range part depends on the bulk density. The former is treated by the truncated functional perturbation
expansion which is rewritten in the form of the simple weighted density approximation and incorporates the
omitted higher-order terms by applying Lagrangian theorem of differential calculus to the reformulated form.
The two approximations are put into the density profile equation of the density functional theory formalism to
predict the density distribution for Lennard-Jones fluid in contact with a hard wall or between two hard walls
within the whole density range for reduced temperafiire= 1.35 and a density point for reduced temperature
T*=1. The present partitioned density functional theory performs much better than several previous density
functional perturbation theory approaches and a recently proposed bridge density functional approximation.
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I. INTRODUCTION (DFPT) which combines the density functional model of
nonuniform hard sphere fluid with the Barker-Henderson
Classical density functional theoffFT) has been devel- second-order perturbation thed§] extended to the nonuni-
oped during the last two decades. Various approximations foiorm case. The other route is to treat the LJ interaction po-
excess He|mh0|tz free energy density functiona|tent|a| as a WhO_le, thIS type of aCC(_ESS can be d|V|ded Into two
Fol([p],T*---). Here,p stands for the density distribution, subtypes._One is based on the bridge fl'mctl'onal cpr{G’épt
T*=1/8¢ is the reduced temperature wigh- 1KkT (k, T are t_he (_)ther is to incorporate the bulk radlal_ distribution func-
Boltzmann's constant and absolute temperature resped©n into the density functional approximati¢. As regard-
tively), and & is the interaction strength parameter, or its g the prediction accuracy for density distribution, the
functional derivative, i.e., the nonuniform first-order direct le:ixi;ré?rglrjslgfﬂ\i/geriy dlgﬁ(s)irtrizgt grthlgvl\sggr_;_sglheswagng g;/igm
correlation functioDCF) CV(r:[p],T*---), had been pro- ' )

ULJ(r):48

1)

gt : tic improvement over the DFMFT within the whole range
posed. However, most of these approximations is for hars jiquig densities, but there is still enough room for im-
sphere model fluid. For example, the weighted density typgroyement for the DFPT. Regarding the bridge density func-
approximatior{1], the functional perturbation expansion ap- ijonal, it only was employed to calculate the interface struc-
proximation[2], the fundamental measure functiohl, the  tyre between the LJ fluid and a wall or interface structure of
bridge density functiondK], etc. For more complicated non- the LJ fluid confined between two walls within limited den-
uniform fluid, for example, the Lennard-JonésJ) fluid  sjty range. So it is necessary to do a detailed investigation
whose potential is of the following form: about the bridge density functional for the LJ fluid within the
1 s whole density range, this constitutes one of the aims of the
r r present work.
(E) B E) ' To improve the DFPT, we also will propose a DF ap-
proach based on the partitioning procedure. Instead of the
Here,o is the interaction-range parameter, long-range attracabove-mentioned DFMFT and DFPT, our partitioning den-
tive interaction has received little attention so far. Generallysity functional approach for Lennard-Jones fluid is based on
speaking, there are two accesses to the nonuniform LJ fluidhe bulk second-order DCF. The reason for one to choose the
one is the so-called partitioning methff] dividing the L] bulk second-order DCEZ)(r;pp, T*-++) (pp,T*--- stand
interaction potential into a short-range, repulsive part, and or the bulk parametersy, is bulk density for the partition-
smoothly varying, long-range, attractive tail. The attraction ising is based on the following consideration that the DCF is a
then treated in the mean field approximati@dFMFT) in  functional of the interaction potential, the DCF is related to
which the radial distribution functiog(r;\), where (0  the interaction potential nonlinearly, only if one sovles the
<\=1) is a coupling parameter for the interaction potentialOrnstein-Zernike integral equation, then all of the nonlinear-
upy(r), is taken to be a Heaviside step function, or is treatedty is incorporated into the DCF. However, the DCFs are
by the so-called thermodynamic perturbation approximatioradditive, it is exactly the first-order DCF that directly enters
into the density profile equation. Obviously, the partitioning
based on the DCF is more reasonable than that based on the
*Corresponding author; email address: chixiayzsq@yahoo.com interaction potential itself.

1063-651X/2003/68)/0612017)/$20.00 68061201-1 ©2003 The American Physical Society



SHIQI ZHOU PHYSICAL REVIEW E 68, 061201 (2003

[l. DENSITY FUNCTIONAL APPROXIMATION where ¢q,(r) is the external potential responsible for gen-
i i istributi (1) L
In DFT formalism, the density profile equation reads aseration of the density d'St”bUtl'Op(r) and Cq(pp, T*-+)
follows: is the uniform counterpart c€V(r;[p], T*---).
A formal “Taylor series” expansion of the nonuniform
r)=ppexpl— N+ CH(r;[p], T*- . )
P(1)=po &XH ~ Beex(r) (rilp] ) first-order DCFCY)(r;[ p]) around a uniform system of bulk

—C{P(pp,T*)} (2)  densityp, can be always written down

<l><r:[p],T*--->=cgl><pb,T*--->+f dra(p(ry) =pp) Co”(Ir=ralipp T )

® 1 n—-1
3 [ an [ [ an T Tt = poICR oy iy T @

Here each functional derivative, i.e., the expansion coefficﬁéﬁ’c(r,rl,--- Jn_1:pp,T7+*) Nn=2, is evaluated at the
initial p,. As done in a recent work9] by the present author, when such a series is terminated, it can be an accurate
representation by having the last functional derivative evaluated not at the jpittalt at somep,+\(p— pp), With constant
\ between 0 and [110]. This is actually a functional counterpart of the well-known Lagrangian theorem of differential calculus
which states that the following E@4) is exact if the value oh is correctly chosen. According to the above procedure, we
truncated the series at the first order, then @Bg.reduces to

LT =y T+ [ dra(p(r2) = IO Lp (o= p) 1T+, @

In the above equations, subscript 0 stands for the uniform case, its removing away corresponds to the nonuniform case.
Equation(4) is exact and it does not include any approximation. It should be noted that the mixing pararskterld be a
constant value, not a field, as held by the current tendency. In fact, the functional counterpart of the Lagrangian theorem of
differential calculus has been regarded as a mathematical theorem, the reader can refgrli@.Rethe second-order DCF
is independent of the density argument, t@&2)(r,ry; [pp+A(p—pp)],T*---) in Eq. (4) reduces to ng)(|r

—rfipp, T*:-2).
Then Eq.(3) reduces to

<1><r;[p],T*--->=cgl><pb,T*--->+J dry(p(r1)—pp)CR(r—ral;pp, T+

2 o (n— 1)| fdrlf dry fdfn 1H [p(rm) = po]COR(r,r 1, Fn_1ipp, T )

= [ dra(otr - pCR 13y T s

Equation(5) can be rewritten as

CH(r;[p), T ) =CEri[p], T )+ CLUr [p], T -2), (6)
where
%”(r;[p].T*--o:cals)(pb,T*---)+f dra(p(ry) = pp) Co(Ir—ralipp T*+ )
E s (n—1)! 1), fdrlf dry fdrn 1H [o(rm) = pulCOR(r,F1,* Fa1;pp, T ) 0
and

ct”(r;[p],T*--->=cgi>(pb,T*--->+f dry(p(r1) = po) Gl (Ir—ral;pp T ). ®
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In Eq. (5), the second and third term stand for the contri-From Fig. 1, one can see that the bulk second-order DCF
bution from the density-depending p&@{2(r;p,, T*--+) of  C@(r;p,,T*--) is almost independent of the bulk density
the bulk second-order DCF ®@™®)(r;[p],T*-+), the fourth ~ argument for separation distance larger thgp=o. So we
term stands for the contribution from the weakly density-choose theCéz)(r;pb,T*-”) for r=0 as Cgﬁ_)(r;pb.T*),
depending parC{(r;py,,T*---) of the bulk second-order then C{(r;p,,T*--:) for r<o is chosen as
DCF to C)(r;[p],T*-++). If the weakly density-depending ngs)(r;pb ,T*---). About the treatment for the contribution
part of the bulk second-order DCF is absolute, i.e.from C{2(r;py,T*---) to CO(r;[p], T*---), a new ap-
C@X(r,ry;py,T*++) is completely independent of the bulk proach is proposed in the present paper.
density, then the fourth term is exact, the more independent The bulk second-order DCEY)(r;p,, T*--+) in Fig. 1
is the weakly density-depending part of the bulk secondand that needed in the following DFT calculation are ob-
order DCF, the more accurate is the fourth term. We willtained by numerically sovling the Ornstein-Zernik®@Z) in-
give a simple proof of the argument in the Appendix.tegral equation with the closure approximation reported in
Cc®(pp,T*--) andC&(p,,T*---) are contributions from Ref.[11] o
the density-depending part and weakly density-depending !f Wettruncate the series in E(?) at the lowest order, we
part of the bulk second-order DCF @:f)l)(pb ,T*--+). There frive a
exists the relationshipC{(py,, T*---)=C{¥(p,, T*- -

SOy Ty (o T )= Coston 1) cg”(r;[p],T*--->=cgls><pb,T*--->+f dr(p(ry)=pp)

Figure 1 displays the bulk second-order DCF at reduced 2) _ .
temperaturel* = 1.35 and several bulk densities for LJ po- X Cog([r=rafipp, T*: ). (10
tential truncated and shifted af =r./o=4: To display the connection between the functional pertur-
bation expansion approximatioffrPEA) and the weighted
density approximation, we rewrite E(L0) in the form of the
=0, r=re. (90  weighted density

c
up(r)=ug(r), rsrg

c(s”u:[p],T*--->=cg§><pb,T*--->+f dry(p(r1)—pp)CR(r—ral;pp, T+

fdrlP(rl)Cg)zg(h’—r1|;pb,T*---)Cgls)/(pb,T*...)

=Cod(pp TH )+ T —pCos (pp, T*+)
os (Pp, 1 "

=CE(pp,T* ) +CH (pp, T+ )(p(r) — py), (11)

where the weighted densify(r) in Eq. (11) is exactly the We expanc[:gls)(ﬁ(r),T*---) around the bulk density,,

one defined in the SWDR12] into Taylor series, then Eq13) allows for the following
relation:
fdr'p(r'>cgzs>(|r—r'l;pb.T*~~-> Ce(ri[p], T*-+)
plr)= , (12) , _
Cl' (pp, T*+) =C3(po, T* ) +CGe (pp, T ) (p(r) = pp)
e A TLI)
, +2, ——————(p(r)—pp)" (14)
and C (pp,T*---)=/[drC@(r;p,, T*---) to assure n§=:2 n! O
the  normalization of the weighting function
CR(ripp T*-)/CE (pp, T*-++). In the SWDA, the non- Comparing Eq(11) with Eq. (14), one finds that the first-
uniform first-order DCFC)(r;[p],T*--) is approximated order FPEA of thec(sl)(r;[p],T*---) is equal to the trun-
as cated Taylor series at first order resulting from expanding the

SWDA around the bulk density, into Taylor series. Based
W . )= . on the similarity of Eq(11) with the Taylor series expansion,
Cs (r;[pl, T -+)=Cqg(p(r), T*---). (13)  one can make use of the Lagrangian theorem of the differ-
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5 o o7=0.001 play a more important part in determining the interface struc-
o/ o ture. The approximations for the interaction between the
-, _5_-»/—"“""” "=t fluid particles are therefore difficult to evaluate clearly. The
© 7] L 00702 external potential in Eq(16) therefore is of the following

TS [T ne’-04 form
151 \,‘/\\th’ =0.6
20_. /\\pb03=0.7 Beex(z)=, z/lo<0

'// \pb03=0.8 =0, 0<Zo. (17)
Bl T 00

J p.o =0. . -
-30 ° We have performed computations at several bulk densities
5] for reduced temperaturd*=1.35 to compare with the

] Monte Carlo simulation result of Balabanét al. [14]. The
40— T T LJ potential is truncated and shiftedrat=4.0c. The value

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 45 5.0 . . . . .
of the cutoff distance . used in the MC simulations varied

with bulk densities, but these values are estimated to be close
FIG. 1. The bulk second-order DGE{?(r;py,,T*---) for sev-  to 4.0v.
eral bulk densities at reduced temperattife= 1.35 for the LJ po- The mixing parametex was specified by a hard wall sum
tential truncated and shifted ef =r./o=4. rule which specifies the bulk pressuPeby a hard wall con-
tact densityp,,

tlc

ential calculus to incorporate the omitted terms in Edl)

into the lowest-order FPEA, i.e., we have P=p,KT. (18
C(sl)(f:[P],T*"')ZCéls)(Pb T*e) pw Can be obtained frorp(0) in Eq. (16) when the external
potential has the same form as that in ELj). The accurate
+CG2 (ot N(p—pp) T*++) pressure of bulk LJ fluid truncated and shifted @t 4.00 is
N difficult to obtain from available empirical equation of state.
X[p(r)=ppl. (15 We obtain the pressure by E@.8) from extrapolation of the

) ) LJ-hard wall density profile to the contact point. It should be
Although Eq.(15) is actually the result resulting from apply- noted that the present scheme is also suitable for any external
ing the Lagrangian theorem to Ed4) which is based on the potential case other than one single hard wall case. The rea-
SWDA Eg. (13) and the Lagrangian theorem specifies theson s the universality of the nonuniform first-order DCF
resulting adjustable parameterto be between 0 and 1, itis c()(r:[p]) as analyzed in detail in Reff9]. The calculation
possible for the present paramekenot to be between 0 and yesyits are displayed in Figs. 2—4. Also, in order to investi-
1, since the SWDA is only an approximation. However, Con-gate the performance of the bridge density functional applied
sidering the nonlinear relationship betweeN and  tg the nonuniform LJ fluid at the whole density range, we
CE(r;[p], T*--+), one can expect Eq15) to improve on  also displayed the prediction of the bridge density functional

the performance of the FPEA and the SWDA. Eth) was  which specifies the nonuniform first order DCF by following
applied to the nonuniform hard sphere fluid, the predictedormulas:

density profile and the surface tension are in good agreement

with the corresponding simulation data3]. Regarding the CY(r:;[p],T*-*)

mixing parametein (considered as an adjustable parameter

in the present approaghone can specify it following a hard —cw T*- - +f dr ro)—
wall sum rule as explained later. o (o, ) 1(p(ra) = po)

Substituting Egs(5)—(8), and(15) into Eq.(2) leads to

p<r>=pbexp[—ﬁ¢ext<r>+<:éls>’<pb+x(? + By

J dri(p(ry) = pp)C2(r—raf;pp, T |,

—po) TN =) [ draCo(ra) =) (19

where the Verlet-modified bridge functidy, is from Eq.
(16) in Ref.[11].

From Figs. 2—4, one can see that the bridge density func-
tional for nonuniform LJ fluid is only comparable in accu-
The system with which we analyze the present approximaracy with the DFMFT at supercritical temperaturg*
tions is a Lennard-Jones fluid next to a hard wall instead of=1.35, the present partitioned DFT for nonuniform LJ fluid
the Lennard-Jones fluid in the presence of attractive wallsat the same temperature achieves higher prediction accuracy
Since in the latter case, the attractive interaction between theven than that of the DFPT at the low, middle, and high
fluid particle and wall may overshadow the attractive inter-density region, it accurately describes the formation of the
action between the fluid particles themselves, the former camapor layer at the interface. On the other hand, the bridge

XC&)(lr—rll;pb,T*---)}. (16)
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FIG. 2. Density distribution profile for a LJ fluid in contact with ~ FIG. 4. Same as in Fig. 2 except that the bulk dengify*
a hard wall at the reduced temperatiife=1.35 and the bulk den- =0.82.
sity p,a®=0.5 for the LJ potential truncated and shifted rt o ) ) )
=r./o=4. The symbols are for the MC dafta4], the lines are for near the hard wall is in good agreement with the simulation
the theoretical predictions. data. However, the present prediction for the density distri-
bution is in better agreement with simulation data than pre-

density functional, as the DFMFT does, shows an oscillation'°US DFPTs within the whole gxternal potentla_l range.

in contradiction to the Monte CarlgMC) results in the low We_ also performed calculation for the density profile .Of
density region. It is well-known that the bridge density func- h‘] ﬂ;:d ]E;cilnfln'ed :)y tV.VO hard walls, the external potential
tional is very accurate for the nonuniform hard sphere fluid as the foflowing form:
[4,15], the bridge functional part of the bridge density func-

tional stands for all of the terms order higher than the first Beex(2) = )
order of the functional perturbation expansion of the » otherwise.
CO(r;[p],T*--+) around the bulk density. According to the . . .
above analysis, the weakly density-depending part of the To compare with th? recent MC simulation dafd, we
bulk second-order DCE i.eCf)zL)(r'pb T*...), is almost in- calculgte for the de'nsny profile generated by the exgernal
dependent of the bulk density, and E8) is very accurate, potential Eq.(20) with H=5 and at bulk densityppo

) . : . . =0.807 and reduced temperatdré= 1. For this state point,
the bridge functional part of the bndgg densm’/c functionaly,ore does not exist accurate bulk pressure data, there also
incurrs thus extra contribution fron€y’(r;pp,T*-++) to

L)y " , . : does not exist data for the LJ-single hard wall density profile.
Ci(r;[p], T*-+). It is exactly this unwelcomed contribu- Ag a crude comparison, we specify the mixing paramater
tion that leads to stronger oscillation than that of the Mbe equating the predicted contacting density value to the
simulation results. Since the present density functional apaccurate MC data. Although so obtained value\d differ-

proximation concerns an adjustable paramgf@ne can say ent from that determined by the single hard wall sum rule
that the good prediction is due to the adjustable parameter. In

fact, if the proposed density functional approximation is in- 14

0 O<z<Ho
(20

L . . : [ ; 1 Prediction from the present partitioned DFT,A=0.71, r, =1.150
trinsically inappropriate, then only the density distribution 139" prediction from the present partiioned DFT A=0.775 , r, =1.0c
1.24
":2 ]
N 114
1.4 2=0.537,r,=1.0 g b
N ] 1046 |
N 124 Prediction by Bridge density functional 0o ® A 7
[=S { e & 7 , X
4 i % N BN g
104 / Prediction from the present partitioned DFT 0847 & % : o« 0’ 'o.
o 018 SN & " *
0.8+ 1 ®\8
X 1 0.6—: .‘;
064 WMMM.J.L.J_. T ——— 05 ]
1 : 0.4+
0.4 03 — T T T~ T 7 7 LA T
00 05 10 15 20 25 30 35 40 45 50
0.2 Zo
0.0 T T T T FIG. 5. Density distribution profile for a LJ fluid truncated and

2l shifted atry =r./0c=2.5 between two hard walls at the reduced
temperaturél* =1.0 and the bulk density,o*=0.807. The sym-
FIG. 3. Same as in Fig. 2 except that the bulk denpity* bols are for the MC dat§5], the lines are for the theoretical pre-
=0.65. dictions.
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due to the implicit approximation in the present density func-profile even if the final value of the adjustable paramater
tional, we believe that the resulted difference of the densitya little different. It also should be noted that the present
distribution profile is not significant. In Fig. 5, the predicted treatment on the contribution from the density-depending
density profile for two cases of,y= o andry=1.15 was  part ngs)(r;pb,T*---) of the bulk second-order DCF to
displayed, near the walls the MC density profile passess;(sl)(r;,T*...) is different from that reported in Reff9]. In
through a maximum and turns download, this specular pheret [9], Ccd(r;[p],T*-++) is expanded functionally around
nomena can be predicted by the present partitioned DFthe hylk density, then the functional counterpart of the La-
however, it cannot be described by previous DFMFT anty angian theorem of differential calculus was employed to
DFPT in Retf.[5]. Furthermore the amplitude of the oscilla- maye the lowest-order truncated series formally exact. How-
tion was exaggerated by the previous DFMFT and DFPT. lgyer, even if the Lagrangian theorem was employed 5.
was also shown that the different cutting distamgg can s not formally exact, because Ed5) is based on the simple
make some quantitative difference for the calculated bulkyeighted density approximation which is a crude approxima-
state point. tion. An advantage of the present scheme for the density-
depending par€{Z(r;p,,T*--) over that in Ref[9] is that

the calculational task is reduced.
I1l. SUMMARY

To conclude, the present paper proposes a partitioned APPENDIX
DFT approach based on dividing the bulk second-order DCF Carrying out a functional integration on the definition of

into _density-depe_:nd!ng part and vv_eakly den_sity-dependinghe nonuniform second-order DCF with the integration path
part instead of dividing the interaction potential, the contri- . osen app+ a(p—py)

bution from the density-depending part to the first-order

DCF was treated by the lowest-order FPEA which incorpo- SCO(r:[p], T+

rates the omitted terms into itself by Lagrangian theorem of CO(r,r;[p],T* )= ,

differential calculus. On the other hand, the contribution op(r’)

from the weakly density-depending part to the first-orderOne obtains

DCF was treated accurately by the lowest-order FPEA. Cal-

culation results indicate that the partitioned DFT based orc(d)(r;[p],T*--+)

dividing the bulk second-order DCF is superior to that based

on dividing the interaction potential itself. The reason why _cW T ld dr’

the present partitioned DFT performs better is thought to be — ~0 (Pb. )+ o a)ar

due to the functional relationship between the structure func-

tion and the interaction potential which is embodied by the XCA(r,r":[pp+alp—pp) 1, T* ) p(r")—ppl.

nonlinear Ornstein-Zernike integral equation. So directly di- (A2)

viding the interaction potential is a oversimple scheme. Only

by solving the nonlinear Ornstein-Zernike integral equation, According to the spirit of the weighted density approxi-

all of the nonlinearity dependence on the interaction potenNmation, C@(r,r’;[ pp+ a(p—py)],T*---) can be approxi-

fcial is embpt_jied by the resulted bulk second-order DCF. S0 if5teq by ng)(|r—r’|;7)(r,r’;a),T*---). Obviously if

foégfdg;:';jﬁg%ozased on the bulk second-order DCF thab(()z)(r;pb,T*~--) is completely independent of the bulk den-
pling between the short-range repulsive pasrltty thenCA(rir": [ po+ ap— py)]T*- ) is exactly equal

and the long-range, attractive tail reasonably. The left prob: é(z) ) T*i--’ q?h é ’X’z d Eq(A3

lem is how to specify the critical separation distangg, to Co(ripp, ). Then Eq(A2) reduces to EQ(A3).

Figure 5 shows that the choosing of the critical separation

distancer 4 is sometimes crucial to the final result even if

(A1)

CH(r[p] T* ) =Cg(pp T* )

the choosing is sometimes not crucial for the final result for
other cases as shown in Figs. 2—4. Our calculation indicates +j CO(lr=r"l;pp, T*-+4)
that for the cases in Figs. 2—#,=0.95s, o, 1.15 did not
produce obvious difference for the final density distribution X[p(r')—ppldr’. (A3)
[1] P. Tarazona, Mol. Phy&2, 81 (1984); Phys. Rev. A31, 2672 Phys. Rev. 62, 4976(2000; P. Tarazona, Phys. Rev. Le#,
(1985; A. Khein and N. W. Ashcroft, Phys. Rev. LetT8, 694 (2000.
3346(1997. [4] S. Zhou and E. Ruckenstein, J. Chem. Phyj® 8079(2000);
[2] T. V. Ramakrishnan and M. Yussouff, Phys. Revlg 2775 S. Zhou, Phys. Rev. B3, 051 203(200); S. Zhou and X.
(1979; G. Rickayzen and A. Augousti, Mol. Phy§2, 1355 Zhang,ibid. 64, 011 112(2001).
(1984); S. Zhou and E. Ruckenstein, Phys. Rev6E 2704 [5] Z. Tang, L. E. Scriven, and H. T. Davis, J. Chem. PHg5.
(2000. 2659 (199)); S. Varga, D. Boda, D. Henderson, and S.
[3] Y. Rosenfeld, Phys. Rev. Let63, 980 (1989; M. Schmidt, Sokolowski, J. Colloid Interface Sc227, 223 (2000.

061201-6



PARTITIONED DENSITY FUNCTIONAL APPROACH F® . ..

[6] J. S. Barker and D. Henderson, Rev. Mod. Ph48, 587
(1976.

[7] S. Zhou and X. Zhang, Acta Physico-Chimica Sinitg(8),
699 (2002; S. Zhou, Commun. Theor. Phy38, 355(2002.

[8] S. Zhou, Phys. Rev. B3, 061 206(2002); S. Zhou, J. Chem.
Phys.115 2212(2002J.

[9] S. Zhou, New J. Physl, 36 (June 2002

[10] V. Volterra, Theory of Functionals(New York, Dover, 1958
p. 26; in Density-Functional Theory of Atoms and Molecules
edited by R. G. Parr and W. Yan@xford University Press,

PHYSICAL REVIEW E 68, 061201 (2003

New York, 1989, p. 249.

[11] N. Choudhury and S. K. Ghosh, J. Chem. Phy&6, 8517
(2002.

[12] S. Zhou, J. Chem. Phy410 2140(1999.

[13] S. Zhou(unpublishedl

[14] C. Balabanic, B. Borstnik, R. Milcic, A. Rubcic, and F.
Sokolic, in Static and Dynamic Properties Liquidedited by
M. Davidovic and A. K. Soper, of Springer Proceedings in
Physics Vol. 40(Springer, Berlin, 1989 p. 70.

[15] S. Zhou, Chin. Phys. LetR0, 2107(2003.

061201-7



