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Partitioned density functional approach for a Lennard-Jones fluid
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The existing classical density functional approach for nonuniform Lennard-Jones fluid, which is based on
dividing the Lennard-Jones interaction potential into a short-range, repulsive part, and a smoothly varying,
long-range, attractive tail, was improved by dividing the bulk second-order direct correlation function into
strongly density-depending short-range part and weakly density-depending long-range part. The latter is treated
by functional perturbation expansion truncated at the lowest order whose accuracy depends on how weakly the
long-range part depends on the bulk density. The former is treated by the truncated functional perturbation
expansion which is rewritten in the form of the simple weighted density approximation and incorporates the
omitted higher-order terms by applying Lagrangian theorem of differential calculus to the reformulated form.
The two approximations are put into the density profile equation of the density functional theory formalism to
predict the density distribution for Lennard-Jones fluid in contact with a hard wall or between two hard walls
within the whole density range for reduced temperatureT* 51.35 and a density point for reduced temperature
T* 51. The present partitioned density functional theory performs much better than several previous density
functional perturbation theory approaches and a recently proposed bridge density functional approximation.
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I. INTRODUCTION

Classical density functional theory~DFT! has been devel
oped during the last two decades. Various approximations
excess Helmholtz free energy density function
Fex(@r#,T*¯). Here,r stands for the density distribution
T* 51/b« is the reduced temperature withb51/kT ~k, T are
Boltzmann’s constant and absolute temperature res
tively!, and « is the interaction strength parameter, or
functional derivative, i.e., the nonuniform first-order dire
correlation function~DCF! C(1)(r ;@r#,T*¯), had been pro-
posed. However, most of these approximations is for h
sphere model fluid. For example, the weighted density t
approximation@1#, the functional perturbation expansion a
proximation@2#, the fundamental measure functional@3#, the
bridge density functional@4#, etc. For more complicated non
uniform fluid, for example, the Lennard-Jones~LJ! fluid
whose potential is of the following form:

uLJ~r !54«F S r

s D 212

2S r

s D 26G . ~1!

Here,s is the interaction-range parameter, long-range attr
tive interaction has received little attention so far. Genera
speaking, there are two accesses to the nonuniform LJ fl
one is the so-called partitioning method@5# dividing the LJ
interaction potential into a short-range, repulsive part, an
smoothly varying, long-range, attractive tail. The attraction
then treated in the mean field approximation~DFMFT! in
which the radial distribution functiong(r ;l), wherel (0
<l<1) is a coupling parameter for the interaction poten
uLJ(r ), is taken to be a Heaviside step function, or is trea
by the so-called thermodynamic perturbation approximat
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~DFPT! which combines the density functional model
nonuniform hard sphere fluid with the Barker-Henders
second-order perturbation theory@6# extended to the nonuni
form case. The other route is to treat the LJ interaction
tential as a whole, this type of access can be divided into
subtypes. One is based on the bridge functional concept@7#,
the other is to incorporate the bulk radial distribution fun
tion into the density functional approximation@8#. As regard-
ing the prediction accuracy for density distribution, th
DFMFT is qualitatively incorrect at low densities and in si
nificant errors at high densities. The DFPT shows a syst
atic improvement over the DFMFT within the whole rang
of liquid densities, but there is still enough room for im
provement for the DFPT. Regarding the bridge density fu
tional, it only was employed to calculate the interface stru
ture between the LJ fluid and a wall or interface structure
the LJ fluid confined between two walls within limited de
sity range. So it is necessary to do a detailed investiga
about the bridge density functional for the LJ fluid within th
whole density range, this constitutes one of the aims of
present work.

To improve the DFPT, we also will propose a DF a
proach based on the partitioning procedure. Instead of
above-mentioned DFMFT and DFPT, our partitioning de
sity functional approach for Lennard-Jones fluid is based
the bulk second-order DCF. The reason for one to choose
bulk second-order DCFC0

(2)(r ;rb ,T*¯) (rb ,T*¯ stand
for the bulk parameters,rb is bulk density! for the partition-
ing is based on the following consideration that the DCF i
functional of the interaction potential, the DCF is related
the interaction potential nonlinearly, only if one sovles t
Ornstein-Zernike integral equation, then all of the nonline
ity is incorporated into the DCF. However, the DCFs a
additive, it is exactly the first-order DCF that directly ente
into the density profile equation. Obviously, the partitioni
based on the DCF is more reasonable than that based o
interaction potential itself.
©2003 The American Physical Society01-1
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II. DENSITY FUNCTIONAL APPROXIMATION

In DFT formalism, the density profile equation reads
follows:

r~r !5rb exp$2bwext~r !1C~1!~r ;@r#,T*¯ !

2C0
~1!~rb ,T*¯ !% ~2!
06120
s

wherewext(r ) is the external potential responsible for ge
eration of the density distributionr(r ) and C0

(1)(rb ,T*¯)
is the uniform counterpart ofC(1)(r ;@r#,T*¯).

A formal ‘‘Taylor series’’ expansion of the nonuniform
first-order DCFC(1)(r ;@r#) around a uniform system of bulk
densityrb can be always written down
curate

culus
we

rm case.

orem of
C~1!~r ;@r#,T*¯ !5C0
~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C0

~2!~ ur2r1u;rb ,T*¯ !

1 (
n53

`
1

~n21!! E dr1E dr2¯E drn21 )
m51

n21

@r~rm!2rb#C0
~n!~r ,r1 ,¯ ,rn21 ;rb ,T*¯ ! ~3!

Here each functional derivative, i.e., the expansion coefficientC0
(n)(r ,r1 ,¯ ,rn21 ;rb ,T*¯) n>2, is evaluated at the

initial rb . As done in a recent work@9# by the present author, when such a series is terminated, it can be an ac
representation by having the last functional derivative evaluated not at the initialrb but at somerb1l(r2rb), with constant
l between 0 and 1@10#. This is actually a functional counterpart of the well-known Lagrangian theorem of differential cal
which states that the following Eq.~4! is exact if the value ofl is correctly chosen. According to the above procedure,
truncated the series at the first order, then Eq.~3! reduces to

C~1!~r ;@r#,T*¯ !5C0
~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C~2!~r ,r1 ;@rb1l~r2rb!#,T*¯ !. ~4!

In the above equations, subscript 0 stands for the uniform case, its removing away corresponds to the nonunifo
Equation~4! is exact and it does not include any approximation. It should be noted that the mixing parameterl should be a
constant value, not a field, as held by the current tendency. In fact, the functional counterpart of the Lagrangian the
differential calculus has been regarded as a mathematical theorem, the reader can refer to Ref.@10#. If the second-order DCF
is independent of the density argument, theC(2)(r ,r1 ; @rb1l(r2rb)#,T*¯) in Eq. ~4! reduces to C0

(2)(ur
2r1u;rb ,T*¯).

Then Eq.~3! reduces to

C~1!~r ;@r#,T*¯ !5C0
~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C0S

~2!~ ur2r1u;rb ,T*¯ !

1 (
n53

`
1

~n21!! E dr1E dr2¯E drn21 )
m51

n21

@r~rm!2rb#C0S
~n!~r ,r1 ,¯ ,rn21 ;rb ,T*¯ !

1E dr1~r~r1!2rb!C0L
~2!~r ,r1 ;rb ,T*¯ !. ~5!

Equation~5! can be rewritten as

C~1!~r ;@r#,T*¯ !5CS
~1!~r ;@r#,T*¯ !1CL

~1!~r ;@r#,T*¯ !, ~6!

where

CS
~1!~r ;@r#,T*¯ !5C0S

~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C0S
~2!~ ur2r1u;rb ,T*¯ !

1 (
n53

`
1

~n21!! E dr1E dr2¯E drn21 )
m51

n21

@r~rm!2rb#C0S
~n!~r ,r1 ,¯ ,rn21 ;rb ,T*¯ ! ~7!

and

CL
~1!~r ;@r#,T*¯ !5C0L

~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C0L
~2!~ ur2r1u;rb ,T*¯ !. ~8!
1-2
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In Eq. ~5!, the second and third term stand for the con
bution from the density-depending partC0S

(2)(r ;rb ,T*¯) of
the bulk second-order DCF toC(1)(r ;@r#,T*¯), the fourth
term stands for the contribution from the weakly densi
depending partC0L

(2)(r ;rb ,T*¯) of the bulk second-orde
DCF to C(1)(r ;@r#,T*¯). If the weakly density-depending
part of the bulk second-order DCF is absolute, i.
C0L

(2)(r ,r1 ;rb ,T*¯) is completely independent of the bu
density, then the fourth term is exact, the more independ
is the weakly density-depending part of the bulk seco
order DCF, the more accurate is the fourth term. We w
give a simple proof of the argument in the Append
C0S

(1)(rb ,T*¯) and C0L
(1)(rb ,T*¯) are contributions from

the density-depending part and weakly density-depend
part of the bulk second-order DCF toC0

(1)(rb ,T*¯). There
exists the relationshipC0

(1)(rb ,T*¯)5C0S
(1)(rb ,T*¯)

1C0L
(1)(rb ,T*¯).

Figure 1 displays the bulk second-order DCF at redu
temperatureT* 51.35 and several bulk densities for LJ p
tential truncated and shifted atr c* 5r c /s54:

uLJ
C ~r !5uLJ~r !, r<r c

50, r>r c . ~9!
n
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From Fig. 1, one can see that the bulk second-order D
C0

(2)(r ;rb ,T*¯) is almost independent of the bulk densi
argument for separation distance larger thanr dcf5s. So we
choose theC0

(2)(r ;rb ,T*¯) for r>s as C0L
(2)(r ;rb ,T* ),

then C0
(2)(r ;rb ,T*¯) for r<s is chosen as

C0S
(2)(r ;rb ,T*¯). About the treatment for the contributio

from C0S
(2)(r ;rb ,T*¯) to C(1)(r ;@r#,T*¯), a new ap-

proach is proposed in the present paper.
The bulk second-order DCFC0

(2)(r ;rb ,T*¯) in Fig. 1
and that needed in the following DFT calculation are o
tained by numerically sovling the Ornstein-Zernike~OZ! in-
tegral equation with the closure approximation reported
Ref. @11#.

If we truncate the series in Eq.~7! at the lowest order, we
arrive at

CS
~1!~r ;@r#,T*¯ !5C0S

~1!~rb ,T*¯ !1E dr1~r~r1!2rb!

3C0S
~2!~ ur2r1u;rb ,T*¯ !. ~10!

To display the connection between the functional pert
bation expansion approximation~FPEA! and the weighted
density approximation, we rewrite Eq.~10! in the form of the
weighted density
CS
~1!~r ;@r#,T*¯ !5C0S

~1!~rb ,T*¯ !1E dr1~r~r1!2rb!C0S
~2!~ ur2r1u;rb ,T*¯ !

5C0S
~1!~rb ,T*¯ !1

E dr1r~r1!C0S
~2!~ ur2r1u;rb ,T*¯ !C0S

~1!8~rb ,T*¯ !

C0S
~1!8~rb ,T*¯ !

2rbC0S
~1!8~rb ,T*¯ !

5C0S
~1!~rb ,T*¯ !1C0S

~1!8~rb ,T*¯ !~ r̄~r !2rb!, ~11!
the

,
fer-
where the weighted densityr̄(r ) in Eq. ~11! is exactly the
one defined in the SWDA@12#

r̄~r !5

E dr 8r~r 8!C0S
~2!~ ur2r 8u;rb ,T*¯ !

C0S
~1!8~rb ,T*¯ !

~12!

and C0S
(1)8(rb ,T*¯)5*drC0S

(2)(r ;rb ,T*¯) to assure
the normalization of the weighting functio

C0S
(2)(r ;rb ,T*¯)/C0S

(1)8(rb ,T*¯). In the SWDA, the non-
uniform first-order DCFC(1)(r ;@r#,T*¯) is approximated
as

CS
~1!~r ;@r#,T*¯ !5C0S

~1!~ r̄~r !,T*¯ !. ~13!
We expandC0S
(1)( r̄(r ),T*¯) around the bulk densityrb

into Taylor series, then Eq.~13! allows for the following
relation:

CS
~1!~r ;@r#,T*¯ !

5C0S
~1!~rb ,T*¯ !1C0S

~1!8~rb ,T*¯ !~ r̄~r !2rb!

1 (
n52

` C0S
~1!n

~rb ,T*¯ !

n!
~ r̄~r !2rb!n. ~14!

Comparing Eq.~11! with Eq. ~14!, one finds that the first-
order FPEA of theCS

(1)(r ;@r#,T*¯) is equal to the trun-
cated Taylor series at first order resulting from expanding
SWDA around the bulk densityrb into Taylor series. Based
on the similarity of Eq.~11! with the Taylor series expansion
one can make use of the Lagrangian theorem of the dif
1-3
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SHIQI ZHOU PHYSICAL REVIEW E 68, 061201 ~2003!
ential calculus to incorporate the omitted terms in Eq.~11!
into the lowest-order FPEA, i.e., we have

CS
~1!~r ;@r#,T*¯ !5C0S

~1!~rb ,T*¯ !

1C0S
~1!8~rb1l~r̄2rb!,T*¯ !

3@ r̄~r !2rb#. ~15!

Although Eq.~15! is actually the result resulting from apply
ing the Lagrangian theorem to Eq.~14! which is based on the
SWDA Eq. ~13! and the Lagrangian theorem specifies t
resulting adjustable parameterl to be between 0 and 1, it i
possible for the present parameterl not to be between 0 an
1, since the SWDA is only an approximation. However, co
sidering the nonlinear relationship betweenl and
CS

(1)(r ;@r#,T*¯), one can expect Eq.~15! to improve on
the performance of the FPEA and the SWDA. Eq.~15! was
applied to the nonuniform hard sphere fluid, the predic
density profile and the surface tension are in good agreem
with the corresponding simulation data@13#. Regarding the
mixing parameterl ~considered as an adjustable parame
in the present approach!, one can specify it following a hard
wall sum rule as explained later.

Substituting Eqs.~5!–~8!, and~15! into Eq. ~2! leads to

r~r !5rb expH 2bwext~r !1C0S
~1!8~rb1l~r̄

2rb!,T*¯ !„r̄~r !2rb…E dr1„r~r1!2rb…

3C0L
~2!~ ur2r1u ;rb ,T*¯ !J . ~16!

The system with which we analyze the present approxim
tions is a Lennard-Jones fluid next to a hard wall instead
the Lennard-Jones fluid in the presence of attractive wa
Since in the latter case, the attractive interaction between
fluid particle and wall may overshadow the attractive int
action between the fluid particles themselves, the former

FIG. 1. The bulk second-order DCFC0
(2)(r ;rb ,T*¯) for sev-

eral bulk densities at reduced temperatureT* 51.35 for the LJ po-
tential truncated and shifted atr c* 5r c /s54.
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play a more important part in determining the interface str
ture. The approximations for the interaction between
fluid particles are therefore difficult to evaluate clearly. T
external potential in Eq.~16! therefore is of the following
form

bwext~z!5}, z/s,0

50, 0,z/s. ~17!

We have performed computations at several bulk dens
for reduced temperatureT* 51.35 to compare with the
Monte Carlo simulation result of Balabanicet al. @14#. The
LJ potential is truncated and shifted atr c54.0s. The value
of the cutoff distancer c used in the MC simulations varie
with bulk densities, but these values are estimated to be c
to 4.0s.

The mixing parameterl was specified by a hard wall sum
rule which specifies the bulk pressureP by a hard wall con-
tact densityrw

P5rwkT. ~18!

rw can be obtained fromr~0! in Eq. ~16! when the external
potential has the same form as that in Eq.~17!. The accurate
pressure of bulk LJ fluid truncated and shifted atr c54.0s is
difficult to obtain from available empirical equation of stat
We obtain the pressure by Eq.~18! from extrapolation of the
LJ-hard wall density profile to the contact point. It should
noted that the present scheme is also suitable for any exte
potential case other than one single hard wall case. The
son is the universality of the nonuniform first-order DC
C(1)(r ;@r#) as analyzed in detail in Ref.@9#. The calculation
results are displayed in Figs. 2–4. Also, in order to inves
gate the performance of the bridge density functional app
to the nonuniform LJ fluid at the whole density range, w
also displayed the prediction of the bridge density functio
which specifies the nonuniform first order DCF by followin
formulas:

C~1!~r ;@r#,T*¯ !

5C0
~1!~rb ,T*¯ !1E dr1„r~r1!2rb…

3C0
~2!~ ur2r1u;rb ,T*¯ !

1BVMF E dr1„r~r1!2rb…C0
~2!~ ur2r1u;rb ,T*¯ !G ,

~19!

where the Verlet-modified bridge functionBVM is from Eq.
~16! in Ref. @11#.

From Figs. 2–4, one can see that the bridge density fu
tional for nonuniform LJ fluid is only comparable in accu
racy with the DFMFT at supercritical temperatureT*
51.35, the present partitioned DFT for nonuniform LJ flu
at the same temperature achieves higher prediction accu
even than that of the DFPT at the low, middle, and hi
density region, it accurately describes the formation of
vapor layer at the interface. On the other hand, the bri
1-4
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PARTITIONED DENSITY FUNCTIONAL APPROACH FOR . . . PHYSICAL REVIEW E 68, 061201 ~2003!
density functional, as the DFMFT does, shows an oscillat
in contradiction to the Monte Carlo~MC! results in the low
density region. It is well-known that the bridge density fun
tional is very accurate for the nonuniform hard sphere fl
@4,15#, the bridge functional part of the bridge density fun
tional stands for all of the terms order higher than the fi
order of the functional perturbation expansion of t
C(1)(r ;@r#,T*¯) around the bulk density. According to th
above analysis, the weakly density-depending part of
bulk second-order DCF, i.e.,C0L

(2)(r ;rb ,T*¯), is almost in-
dependent of the bulk density, and Eq.~8! is very accurate,
the bridge functional part of the bridge density function
incurrs thus extra contribution fromC0L

(2)(r ;rb ,T*¯) to
CL

(1)(r ;@r#,T*¯). It is exactly this unwelcomed contribu
tion that leads to stronger oscillation than that of the M
simulation results. Since the present density functional
proximation concerns an adjustable parameterl, one can say
that the good prediction is due to the adjustable paramete
fact, if the proposed density functional approximation is
trinsically inappropriate, then only the density distributio

FIG. 2. Density distribution profile for a LJ fluid in contact wit
a hard wall at the reduced temperatureT* 51.35 and the bulk den-
sity rbs350.5 for the LJ potential truncated and shifted atr c*
5r c /s54. The symbols are for the MC data@14#, the lines are for
the theoretical predictions.

FIG. 3. Same as in Fig. 2 except that the bulk densityrbs3

50.65.
06120
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near the hard wall is in good agreement with the simulat
data. However, the present prediction for the density dis
bution is in better agreement with simulation data than p
vious DFPTs within the whole external potential range.

We also performed calculation for the density profile
LJ fluid confined by two hard walls, the external potent
has the following form:

bwext~z!5H 0 0,z,Hs

` otherwise.
~20!

To compare with the recent MC simulation data@5#, we
calculate for the density profile generated by the exter
potential Eq. ~20! with H55 and at bulk densityrbs3

50.807 and reduced temperatureT* 51. For this state point,
there does not exist accurate bulk pressure data, there
does not exist data for the LJ-single hard wall density profi
As a crude comparison, we specify the mixing parametel
by equating the predicted contacting density value to
accurate MC data. Although so obtained value ofl is differ-
ent from that determined by the single hard wall sum r

FIG. 4. Same as in Fig. 2 except that the bulk densityrbs3

50.82.

FIG. 5. Density distribution profile for a LJ fluid truncated an
shifted atr c* 5r c /s52.5 between two hard walls at the reduce
temperatureT* 51.0 and the bulk densityrbs350.807. The sym-
bols are for the MC data@5#, the lines are for the theoretical pre
dictions.
1-5
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SHIQI ZHOU PHYSICAL REVIEW E 68, 061201 ~2003!
due to the implicit approximation in the present density fun
tional, we believe that the resulted difference of the den
distribution profile is not significant. In Fig. 5, the predicte
density profile for two cases ofr dcf5s andr dcf51.15s was
displayed, near the walls the MC density profile pas
through a maximum and turns download, this specular p
nomena can be predicted by the present partitioned D
however, it cannot be described by previous DFMFT a
DFPT in Ref.@5#. Furthermore the amplitude of the oscilla
tion was exaggerated by the previous DFMFT and DFPT
was also shown that the different cutting distancer dcf can
make some quantitative difference for the calculated b
state point.

III. SUMMARY

To conclude, the present paper proposes a partitio
DFT approach based on dividing the bulk second-order D
into density-depending part and weakly density-depend
part instead of dividing the interaction potential, the con
bution from the density-depending part to the first-ord
DCF was treated by the lowest-order FPEA which incorp
rates the omitted terms into itself by Lagrangian theorem
differential calculus. On the other hand, the contributi
from the weakly density-depending part to the first-ord
DCF was treated accurately by the lowest-order FPEA. C
culation results indicate that the partitioned DFT based
dividing the bulk second-order DCF is superior to that ba
on dividing the interaction potential itself. The reason w
the present partitioned DFT performs better is thought to
due to the functional relationship between the structure fu
tion and the interaction potential which is embodied by
nonlinear Ornstein-Zernike integral equation. So directly
viding the interaction potential is a oversimple scheme. O
by solving the nonlinear Ornstein-Zernike integral equati
all of the nonlinearity dependence on the interaction pot
tial is embodied by the resulted bulk second-order DCF. S
is the dividing based on the bulk second-order DCF t
considers the coupling between the short-range repulsive
and the long-range, attractive tail reasonably. The left pr
lem is how to specify the critical separation distancer dcf ,
Figure 5 shows that the choosing of the critical separa
distancer dcf is sometimes crucial to the final result even
the choosing is sometimes not crucial for the final result
other cases as shown in Figs. 2–4. Our calculation indic
that for the cases in Figs. 2–4,r dcf50.95s, s, 1.15s did not
produce obvious difference for the final density distributi
06120
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profile even if the final value of the adjustable parameterl is
a little different. It also should be noted that the prese
treatment on the contribution from the density-depend
part C0S

(2)(r ;rb ,T*¯) of the bulk second-order DCF to
CS

(1)(r ;,T*¯) is different from that reported in Ref.@9#. In
Ref. @9#, CS

(1)(r ;@r#,T*¯) is expanded functionally aroun
the bulk density, then the functional counterpart of the L
grangian theorem of differential calculus was employed
make the lowest-order truncated series formally exact. Ho
ever, even if the Lagrangian theorem was employed, Eq.~15!
is not formally exact, because Eq.~15! is based on the simple
weighted density approximation which is a crude approxim
tion. An advantage of the present scheme for the dens
depending partC0S

(2)(r ;rb ,T*¯) over that in Ref.@9# is that
the calculational task is reduced.

APPENDIX

Carrying out a functional integration on the definition
the nonuniform second-order DCF with the integration p
chosen asrb1a(r2rb)

C~2!~r ,r 8;@r#,T*¯ !5
dC~1!~r ;@r#,T*¯ !

dr~r 8!
~A1!

one obtains

C~1!~r ;@r#,T*¯ !

5C0
~1!~rb ,T*¯ !1E

0

1

daE dr 8

3C~2!~r ,r 8;@rb1a~r2rb!#,T*¯ !@r~r 8!2rb#.

~A2!

According to the spirit of the weighted density approx
mation, C(2)(r ,r 8;@rb1a(r2rb)#,T*¯) can be approxi-
mated by C0

(2)(ur2r 8u; r̃(r ,r 8;a),T*¯). Obviously if
C0

(2)(r ;rb ,T*¯) is completely independent of the bulk de
sity, thenC(2)(r ;r 8;@rb1a(r2rb)#T*¯) is exactly equal
to C0

(2)(r ;rb ,T*¯). Then Eq.~A2! reduces to Eq.~A3!.

C~1!~r ;@r#,T*¯ !5C0
~1!~rb ,T*¯ !

1E C0
~2!~ ur2r 8u;rb ,T*¯ !

3@r~r 8!2rb#dr 8 . ~A3!
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